Environmental Nanotechnology: Its Applications, Effects and Management
Environmental nanotechnology is holding an immense position in modern days’ science and engineering. These advanced ‘nanomaterials’ are being utilized for diverse range of applications but with the ideology of saving environment. Environmental sector is being tackled with the aim of developing sensors for detecting, monitoring and analysing the toxic contaminants so as to protect and remediate environment. In the presented chapter we have tried to illustrate applications of nanofields, and resulting impacts on the four spheres of the earth. Many efforts are being taken to have a check on the negative impacts of the nanotechnology but still there are many prevailing discrepancies that need to be confronted.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 85.59 Price includes VAT (France)
Softcover Book EUR 105.49 Price includes VAT (France)
Hardcover Book EUR 105.49 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change
Chapter © 2021
Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change
Chapter © 2020
Nanotechnology: Perspective for Environmental Sustainability
Chapter © 2014
References
- Abbott LC, Maynard AD (2010) Exposure assessment approaches for engineered nanomaterials. Risk Anal 30:1634–1644. https://doi.org/10.1111/j.1539-6924.2010.01446.xArticleGoogle Scholar
- Agnihotri S, Rood MJ, Rostam-Abadi M (2005) Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43:2379–2388. https://doi.org/10.1016/j.carbon.2005.04.020ArticleCASGoogle Scholar
- Ai J, Biazar E, Jafarpour M et al (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 6:1117–1127. https://doi.org/10.2147/IJN.S16603ArticleCASGoogle Scholar
- Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. PNAS 99:12617–12621. https://doi.org/10.1073/pnas.152463399ArticleCASGoogle Scholar
- Allen TM (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822. https://doi.org/10.1126/science.1095833ArticleCASGoogle Scholar
- Alyautdin RN, Tezikov EB, Ramge P et al (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80–coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67–74. https://doi.org/10.3109/02652049809006836ArticleCASGoogle Scholar
- Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051ArticleCASGoogle Scholar
- Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184. https://doi.org/10.1016/j.scitotenv.2004.04.062ArticleCASGoogle Scholar
- Banerjee S, Mohapatra SK, Das PP et al (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791. https://doi.org/10.1021/cm802282tArticleCASGoogle Scholar
- Bianco A (2013) Graphene: safe or toxic? The two faces of the medal. Angew Chem 52:4986–4997. https://doi.org/10.1002/anie.201209099ArticleCASGoogle Scholar
- Biswas P, Zachariah MR (1997) In situ immobilization of lead species in combustion environments by injection of gas phase silica sorbent precursors. Environ Sci Technol 31:2455–2463. https://doi.org/10.1021/es9700663ArticleCASGoogle Scholar
- Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484. https://doi.org/10.1002/smll.200700863ArticleCASGoogle Scholar
- Cáceres-Vélez PR, Fascineli ML, Rojas E et al (2019) Impact of humic acid on the persistence, biological fate and toxicity of silver nanoparticles: a study in adult zebrafish. Environ Nanotechnol Monit Manag 12:100234. https://doi.org/10.1016/j.enmm.2019.100234ArticleGoogle Scholar
- Cerqueira MA, Vicente AA, Pastrana LM (2018) Nanotechnology in food packaging: opportunities and challenges. In: Nanomaterials for food packaging: materials, processing technologies and safety issues, 1st edn. Elsevier, Amsterdam, pp 1–11. https://doi.org/10.1016/B978-0-323-51271-8.00001-2ChapterGoogle Scholar
- Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. https://doi.org/10.1126/science.281.5385.2016ArticleCASGoogle Scholar
- Chen Y, Jiang J (2010) A bio-metal-organic framework for highly selective CO2 capture: a molecular simulation study. Chem Sus Chem 3:982–988. https://doi.org/10.1002/cssc.201000080ArticleCASGoogle Scholar
- Chen M, Qin X, Zeng G (2017) Biodiversity change behind wide applications of nanomaterials? Nano Today 17:11–13. https://doi.org/10.1016/j.nantod.2017.09.001ArticleCASGoogle Scholar
- Chuacharoen T, Sabliov CM (2016) Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids Surf A Physicochem Eng Asp 503:11–18. https://doi.org/10.1016/j.colsurfa.2016.04.038ArticleCASGoogle Scholar
- Cong Y, Banta GT, Selck H et al (2014) Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor. Aquat Toxicol 156:106–115. https://doi.org/10.1016/j.aquatox.2014.08.001ArticleCASGoogle Scholar
- Das B, Dash SK, Manda D et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876. https://doi.org/10.1016/j.arabjc.2015.08.008ArticleCASGoogle Scholar
- Davis SS (1997) Biomédical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224. https://doi.org/10.1016/S0167-7799(97)01036-6ArticleCASGoogle Scholar
- de Kozak Y, Andrieux K, Villarroya H et al (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:3702–3712. https://doi.org/10.1002/eji.200425022ArticleCASGoogle Scholar
- Deng R, Lin D, Zhu L et al (2017) Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11:591–612. https://doi.org/10.1080/17435390.2017.1343404ArticleCASGoogle Scholar
- Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. https://doi.org/10.1021/nl0347334ArticleCASGoogle Scholar
- Du J, Hu X, Zhou Q (2015) Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv 5:27009–27017. https://doi.org/10.1039/C5RA01045DArticleCASGoogle Scholar
- Elliott DW, Zhang W (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926. https://doi.org/10.1021/es0108584ArticleCASGoogle Scholar
- Emerich DF (2005) Nanomedicine—prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5:1–5. https://doi.org/10.1517/14712598.5.1.1ArticleCASGoogle Scholar
- Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531. https://doi.org/10.1016/j.envint.2010.10.012ArticleCASGoogle Scholar
- Feng SS, Mu L, Win KY et al (2004) Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem 11:413–424. https://doi.org/10.2174/0929867043455909ArticleCASGoogle Scholar
- Ferey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042. https://doi.org/10.1126/science.1116275ArticleCASGoogle Scholar
- Forest V, Leclerc L, Hochepied JF et al (2017) Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol In Vitro 38:136–141. https://doi.org/10.1016/j.tiv.2016.09.022ArticleCASGoogle Scholar
- Freixa A, Acuna V, Sanchis J et al (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619–620:328–337. https://doi.org/10.1016/j.scitotenv.2017.11.095ArticleCASGoogle Scholar
- Frenk S, Ben-Moshe T, Dror I et al (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441. https://doi.org/10.1371/journal.pone.0084441ArticleCASGoogle Scholar
- Gajjar P, Pettee B, Britt DW et al (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9. https://doi.org/10.1186/1754-1611-3-9ArticleCASGoogle Scholar
- Gao Y, Chen K, Ma J et al (2014) Cerium oxide nanoparticles in cancer. Onco Targets Ther 7:835–840. https://doi.org/10.2147/OTT.S62057ArticleCASGoogle Scholar
- Garcia GJM, Schroeter JD, Kimbell JS (2015) Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol 27:394–403. https://doi.org/10.3109/08958378.2015.1066904ArticleCASGoogle Scholar
- Garcia-Garcia E, Gill S, Andrieux K et al (2005) A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci 62:1400–1408. https://doi.org/10.1007/s00018-005-5094-3ArticleGoogle Scholar
- Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 2015(8):1–17. https://doi.org/10.2147/NSA.S43773ArticleGoogle Scholar
- Gomes T, Araujo O, Pereira R et al (2013) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res 84:51–59. https://doi.org/10.1016/j.marenvres.2012.11.009ArticleCASGoogle Scholar
- Gotovac S, Hattori Y, Noguchi D et al (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110:16219–16224. https://doi.org/10.1021/jp0611830ArticleCASGoogle Scholar
- Gottschall N, Topp E, Metcalfe C et al (2012) Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere 87:194–203. https://doi.org/10.1016/j.chemosphere.2011.12.018ArticleCASGoogle Scholar
- Grieger KD, Fjordboge A, Hartmann NB et al (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183. https://doi.org/10.1016/j.jconhyd.2010.07.011ArticleCASGoogle Scholar
- Guccione S, Li KCP, Bednarski MD (2004) Vascular-targeted nanoparticles for molecular imaging and therapy. Methods Enzymol 386:219–236. https://doi.org/10.1016/S0076-6879(04)86010-5ArticleCASGoogle Scholar
- Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22:105–115. https://doi.org/10.1016/j.jfda.2014.01.009ArticleCASGoogle Scholar
- Gurunathan S (2015) Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J Ind Eng Chem 32:282–291. https://doi.org/10.1016/j.jiec.2015.08.027ArticleCASGoogle Scholar
- Halsall CJ, Maher BA, Karloukovski VV et al (2008) A novel approach to investigating indoor/outdoor pollution links: combined magnetic and PAH measurements. Atmos Environ 42:8902–8909. https://doi.org/10.1016/j.atmosenv.2008.09.001ArticleCASGoogle Scholar
- Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9:125–144. https://doi.org/10.1080/13698570701306807ArticleGoogle Scholar
- He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21. https://doi.org/10.1016/j.jfda.2018.12.002ArticleCASGoogle Scholar
- Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2:663–664. https://doi.org/10.1038/nnano.2007.350ArticleCASGoogle Scholar
- Ho W, Yu JC, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 10:1115–1117. https://doi.org/10.1039/b515513dArticleCASGoogle Scholar
- Hou J, Zhou Y, Wang C et al (2017) Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ Sci Technol 51:12868–12878. https://doi.org/10.1021/acs.est.7b03918ArticleCASGoogle Scholar
- Hu J, Wang D, Wang J et al (2012) Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO(2) and nano-TiO(2). Chemosphere 89:536–541. https://doi.org/10.1016/j.chemosphere.2012.05.045ArticleCASGoogle Scholar
- Hu J, Zhang Z, Zhang C et al (2018) Al2O3 nanoparticle impact on the toxic effect of Pb on the marine microalga Isochrysis galbana. Ecotoxicol Environ Saf 161:92–98. https://doi.org/10.1016/j.ecoenv.2018.05.090ArticleCASGoogle Scholar
- Huang L, Li Y, Xu H et al (2013) Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Adv 3:22269–22279. https://doi.org/10.1039/c3ra42712aArticleCASGoogle Scholar
- Huang C, Chen C, Zhang M et al (2015) Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun 6:7698. https://doi.org/10.1038/ncomms8698ArticleGoogle Scholar
- Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47:661–677. https://doi.org/10.1021/es3030148ArticleCASGoogle Scholar
- Hussain I, Singh A, Singh NB et al (2019) Plant-nanoceria interaction: Toxicity, accumulation, translocation and biotransformation. S Afr J Bot 121:139–147.https://doi.org/10.1016/j.sajb.2018.11.013ArticleCASGoogle Scholar
- Intergovernmental Panel on Climate Change (IPCC) (2007) The IPCC fourth assessment report. Climate change: the physical science basis. IPCC, Geneva Google Scholar
- Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/C0NR00583EArticleCASGoogle Scholar
- Jackson P, Jacobsen NR, Baun A et al (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154. https://doi.org/10.1186/1752-153X-7-154ArticleCASGoogle Scholar
- Jiang Y, Quan X, Jiang G et al (2019) Current prospective on environmental nanotechnology research in China. Environ Sci Technol 53:4001–4002. https://doi.org/10.1021/acs.est.9b01489ArticleCASGoogle Scholar
- Johansson C, Norman M, Gidhagen L (2007) Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ Monit Assess 127:477–487. https://doi.org/10.1007/s10661-006-9296-4ArticleCASGoogle Scholar
- Joung HJ, Choi MJ, Kim JT et al (2016) Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci 81:N745–N753. https://doi.org/10.1111/1750-3841.13224ArticleCASGoogle Scholar
- Kabir E, Kumar V, Kim KH et al (2018) Environmental impacts of nanomaterials. J Environ Manage 225:261–271. https://doi.org/10.1016/j.jenvman.2018.07.087ArticleCASGoogle Scholar
- Kanel SR, Grenèche J-M, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. https://doi.org/10.1021/es0520924ArticleCASGoogle Scholar
- Karn B (2004) Overview of environmental applications and implications. How does nanotechnology relate to the environment? Or why are we here? In: Karn B, Masciangioli T, Zhang WX, Colvin V, Alivisatos P (eds) Nanotechnology and the environment. American Chemical Society, Washington, DC, pp 2–7. https://doi.org/10.1021/bk-2005-0890.ch001ChapterGoogle Scholar
- Kattan J, Droz J-P, Couvreur P et al (1992) Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 3:191–199. https://doi.org/10.1007/BF00877245ArticleGoogle Scholar
- Kibbey TCG, Strevett KA (2019) The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere 221:703–707. https://doi.org/10.1016/j.chemosphere.2019.01.091ArticleCASGoogle Scholar
- Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349. https://doi.org/10.1016/j.envpol.2010.03.024ArticleCASGoogle Scholar
- Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. https://doi.org/10.1897/08-090.1ArticleCASGoogle Scholar
- Kong J, Franklin NR, Zhou C et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625. https://doi.org/10.1126/science.287.5453.622ArticleCASGoogle Scholar
- Kritchenkov AS, Egorov AR, Dubashynskaya NV et al (2019) Natural polysaccharide-based smart (temperature sensing) and active (antibacterial, antioxidant and photoprotective) nanoparticles with potential application in biocompatible food coatings. Int J Biol Macromol 134:480–486. https://doi.org/10.1016/j.ijbiomac.2019.04.194ArticleCASGoogle Scholar
- Kumar M, Jain V, Yamanaka T et al (2018) Contaminant transport and fate in freshwater systems—integrating the fields of geochemistry, geomorphology and nanotechnology. Groundw Sustain Dev 7:336–342. https://doi.org/10.1016/j.gsd.2018.09.001ArticleGoogle Scholar
- Lee MH, Cho K, Shah AP et al (2005) Nanostructured sorbents for capture of cadmium species in combustion environments. Environ Sci Technol 39:8481–8489. https://doi.org/10.1021/es0506713ArticleCASGoogle Scholar
- Levesque S, Surace MJ, McDonald J et al (2011) Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflamm 8:105. https://doi.org/10.1186/1742-2094-8-105ArticleCASGoogle Scholar
- Li N, Sioutas C, Cho A et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460. https://doi.org/10.1289/ehp.6000ArticleCASGoogle Scholar
- Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122. https://doi.org/10.1080/10408430601057611ArticleCASGoogle Scholar
- Li B, Jiang B, Fauth DJ et al (2011) Innovative nano-layered solid sorbents for CO2 capture. Chem Commun 47:1719–1721. https://doi.org/10.1039/C0CC03817BArticleCASGoogle Scholar
- Li X, Zhou S, Fan W (2016) Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards scenedesmus obliquus. Int J Environ Res Public Health 13:575. https://doi.org/10.3390/ijerph13060575ArticleCASGoogle Scholar
- Liang B, Zhang P, Wang J et al (2016) Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon 103:94–100. https://doi.org/10.1016/j.carbon.2016.03.001ArticleCASGoogle Scholar
- Lin H, Datar RH (2006) Medical applications of nanotechnology. Natl Med J India 19:27–32. http://www.ncbi.nlm.nih.gov/pubmed/16570683Google Scholar
- Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. https://doi.org/10.1016/j.envpol.2007.01.016ArticleCASGoogle Scholar
- Ling S, Jin K, Kaplan DL et al (2016) Ultrathin free-standing Bombyx morisilk nanofibril membranes. Nano Lett 16:3795–3800. https://doi.org/10.1021/acs.nanolett.6b01195ArticleCASGoogle Scholar
- Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812. https://doi.org/10.1002/ps.1566ArticleCASGoogle Scholar
- Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059. https://doi.org/10.1021/ja003830lArticleCASGoogle Scholar
- Louie SM, Dale AL, Casman EA et al (2016) Challenges facing the environmental nanotechnology research enterprise. In: Xing B, Vecitis CD, Senesi N (eds) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Hoboken, NJ, pp 1–19. https://doi.org/10.1002/9781119275855.ch1ChapterGoogle Scholar
- Luo H, Takata T, Lee Y et al (2004) Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16:846–849. https://doi.org/10.1021/cm035090wArticleCASGoogle Scholar
- Luo X, Xu S, Yang Y et al (2016) Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans. Sci Rep 6:36465. https://doi.org/10.1038/srep36465ArticleCASGoogle Scholar
- Lyon DY, Adams LK, Falkner JC et al (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366. https://doi.org/10.1021/es0603655ArticleCASGoogle Scholar
- Madaeni SS, Fane AG, Grohmann GS (1995) Virus removal from water and wastewater using membranes. J Membr Sci 102:65–75. https://doi.org/10.1016/0376-7388(94)00252-TArticleCASGoogle Scholar
- Maher BA (2019) Airborne magnetite- and iron-rich pollution nanoparticles: potential neurotoxicants and environmental risk factors for neurodegenerative disease, including Alzheimer’s disease. J Alzheimers Dis 71:361–375. https://doi.org/10.3233/JAD-190204ArticleCASGoogle Scholar
- Maher BA, Ahmed IAM, Karloukovski V et al (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci 113:10797–10801. https://doi.org/10.1073/pnas.1605941113ArticleCASGoogle Scholar
- Maldiney T, Bessiere A, Seguin J et al (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater 13:418–426. https://doi.org/10.1038/nmat3908ArticleCASGoogle Scholar
- Mao P, Feng SY, Yang Y et al (2014) Collection of nano-TiO2 aerosol by using a novel wet sampler. In: Cai X, Heng J (eds) Particle science and engineering: proceedings of UK-China international particle technology forum IV. Royal Society of Chemistry, London, pp 75–83. https://doi.org/10.1039/9781782627432-00075ChapterGoogle Scholar
- Mattigod SV, Fryxell GE, Alford K et al (2005) Functionalized TiO2 nanoparticles for use for in situ anion immobilization. Environ Sci Technol 39:7306–7310. https://doi.org/10.1021/es048982lArticleCASGoogle Scholar
- Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444:267–269. https://doi.org/10.1038/444267aArticleCASGoogle Scholar
- McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3:506–533. https://doi.org/10.1039/C6EN00007JArticleCASGoogle Scholar
- Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999. https://doi.org/10.1021/ja0570032ArticleCASGoogle Scholar
- Mishra M, Dashora K, Srivastava A et al (2019) Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol Environ Saf 171:677–682. https://doi.org/10.1016/j.ecoenv.2018.12.085ArticleCASGoogle Scholar
- Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976. https://doi.org/10.1016/j.envint.2006.06.014ArticleCASGoogle Scholar
- Mostafavi ST, Mehrnia MR, Rashidi AM (2009) Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination 238:271–280. https://doi.org/10.1016/j.desal.2008.02.018ArticleCASGoogle Scholar
- Murphy P, Munshi D, Lakhtakia A et al (2017) Nanotechnology, society, and environment. In: Reference module in materials science and materials engineering. https://doi.org/10.1016/B978-0-12-803581-8.10311-XChapterGoogle Scholar
- Nasrollahzadeh M, Sajadi SM, Sajjadi M et al (2019a) An introduction to nanotechnology. In: Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z, Atarod M (eds) An introduction to green nanotechnology, vol 28. Elsevier, Amsterdam, pp 1–27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8ChapterGoogle Scholar
- Nasrollahzadeh M, Sajadi SM, Sajjadi M et al (2019b) Applications of nanotechnology in daily life. In: Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z, Atarod M (eds) An introduction to Green nanotechnology, vol 28. Elsevier, Amsterdam, pp 113–143. https://doi.org/10.1016/B978-0-12-813586-0.00004-3ChapterGoogle Scholar
- National Science and Technology Council (2000) National nanotechnology initiative: leading to the next industrial revolution (2000). National Science and Technology Council, Washington, DC Google Scholar
- Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397ArticleCASGoogle Scholar
- Nepal D, Balasubramanian S, Simonian AL et al (2008) Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8:1896–1901. https://doi.org/10.1021/nl080522tArticleCASGoogle Scholar
- Nowack B (2010) Pollution prevention and treatment using nanotechnology. In: Krug H (ed) Nanotechnology, 1st edn. Wiley-VCH Verlag GmbH, Weinheim, pp 1–15. https://doi.org/10.1002/9783527628155.nanotech010ChapterGoogle Scholar
- Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. https://doi.org/10.1016/j.envpol.2007.06.006ArticleCASGoogle Scholar
- Oleszczuk P, Jośko I, Skwarek E (2015) Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology 24:1923–1932. https://doi.org/10.1007/s10646-015-1529-2ArticleCASGoogle Scholar
- Panyam J, Labhasetwar V (2012) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 64:61–71. https://doi.org/10.1016/j.addr.2012.09.023ArticleGoogle Scholar
- Pathakoti K, Manubolu M, Hwang H-M (2018) Nanotechnology applications for environmental industry. In: Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 894–907. https://doi.org/10.1016/B978-0-12-813351-4.00050-XChapterGoogle Scholar
- Peng L, He X, Zhang P et al (2014) Comparative pulmonary toxicity of two ceria nanoparticles with the same primary size. Int J Mol Sci 15:6072–6085. https://doi.org/10.3390/ijms15046072ArticleCASGoogle Scholar
- Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545. https://doi.org/10.1002/ps.1732ArticleCASGoogle Scholar
- Pešić M, Podolski-Renic A, Stojkovic S et al (2015) Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem Biol Interact 232:85–93. https://doi.org/10.1016/j.cbi.2015.03.013ArticleCASGoogle Scholar
- Pitoniak E, Wu C-Y, Mazyck DW et al (2005) Adsorption enhancement mechanisms of silica−titania nanocomposites for elemental mercury vapor removal. Environ Sci Technol 39:1269–1274. https://doi.org/10.1021/es049202bArticleCASGoogle Scholar
- Prabha S, Labhasetwar V (2004) Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm Res 21:354–364. https://doi.org/10.1023/B:PHAM.0000016250.56402.99ArticleCASGoogle Scholar
- Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392. https://doi.org/10.1038/nrmicro1643ArticleCASGoogle Scholar
- Pulido-Reyes G, Rodea-Palomares I, Das S et al (2015) Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep 5:15613. https://doi.org/10.1038/srep15613ArticleCASGoogle Scholar
- Purohit R, Mittal A, Dalela S et al (2017) Social, environmental and ethical impacts of nanotechnology. Mater Today Proc 4:5461–5467. https://doi.org/10.1016/j.matpr.2017.05.058ArticleGoogle Scholar
- Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946. https://doi.org/10.1016/j.watres.2012.09.058ArticleCASGoogle Scholar
- Ren H, Koshy P, Chen WF et al (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366. https://doi.org/10.1016/j.jhazmat.2016.08.072ArticleCASGoogle Scholar
- Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8:19–24. https://doi.org/10.1016/j.stam.2006.10.002ArticleCASGoogle Scholar
- Ruminski AM, Jeon K-J, Urban JJ (2011) Size-dependent CO2 capture in chemically synthesized magnesium oxide nanocrystals. J Mater Chem 21:11486–11491. https://doi.org/10.1039/c1jm11784jArticleCASGoogle Scholar
- Saha N, Dutta Gupta S (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28. https://doi.org/10.1016/j.jhazmat.2017.01.021ArticleCASGoogle Scholar
- Saikia BK, Saikia J, Rabha S et al (2018) Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: implications on energy challenges and health hazards. Geosci Front 9:863–875. https://doi.org/10.1016/j.gsf.2017.11.013ArticleCASGoogle Scholar
- Saitoh K, Kuroda T, Kumano S (2001) Effects of organic fertilization and pesticide application on growth and yield of field-grown rice for 10 years. Jpn J Crop Sci 70:530–540. https://doi.org/10.1626/jcs.70.530ArticleGoogle Scholar
- Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911. https://doi.org/10.1002/anie.200351577ArticleCASGoogle Scholar
- Schlich K, Hoppe M, Kraas M et al (2017) Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study. Ecotoxicology 26:738–751. https://doi.org/10.1007/s10646-017-1805-4ArticleCASGoogle Scholar
- Schlich K, Hoppe M, Kraas M et al (2018) Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants. Environ Pollut 242:1850–1859. https://doi.org/10.1016/j.envpol.2018.07.082ArticleCASGoogle Scholar
- Scown TM, van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670. https://doi.org/10.3109/10408444.2010.494174ArticleCASGoogle Scholar
- Sehn JL, de Leao FB, da Boit K et al (2016) Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147:439–443. https://doi.org/10.1016/j.chemosphere.2015.12.065ArticleCASGoogle Scholar
- Serrano E (2010) Nanotechnology and the environment. Mater Today 13:55. https://doi.org/10.1016/S1369-7021(10)70089-4ArticleGoogle Scholar
- Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148. https://doi.org/10.1007/s11270-008-9797-6ArticleCASGoogle Scholar
- Sharma YC, Srivastava V, Singh VK et al (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609. https://doi.org/10.1080/09593330902838080ArticleCASGoogle Scholar
- Shrestha B, Acosta-Martinez V, Cox SB et al (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 26:188–197. https://doi.org/10.1016/j.jhazmat.2013.07.031ArticleCASGoogle Scholar
- Smith AM, Dave S, Nie S et al (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6:231–244. https://doi.org/10.1586/14737159.6.2.231ArticleCASGoogle Scholar
- Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 4:1831–1841. https://doi.org/10.1021/ar8001377ArticleCASGoogle Scholar
- Srivastava A, Srivastava ON, Talapatra S et al (2004) Carbon nanotube filters. Nat Mater 3:610–614. https://doi.org/10.1038/nmat1192ArticleCASGoogle Scholar
- Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579 ArticleCASGoogle Scholar
- Subramani K, Elhissi A, Subbiah U et al (2019) Introduction to nanotechnology. In: Nanobiomaterials in clinical dentistry. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-12-815886-9.00001-2ChapterGoogle Scholar
- Sun Y, Wu C, Zhang S et al (2010) Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature. Nano Res 3:620–631. https://doi.org/10.1007/s12274-010-0022-8ArticleCASGoogle Scholar
- Sun J-X, Yuan Y-P, Qiu L-G et al (2012) Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans 41:6756. https://doi.org/10.1039/c2dt12474bArticleCASGoogle Scholar
- Tan BYL, Tai MH, Juay J et al (2015) A study on the performance of self-cleaning oil–water separation membrane formed by various TiO2 nanostructures. Sep Purif Technol 156:942–951. https://doi.org/10.1016/j.seppur.2015.09.060ArticleCASGoogle Scholar
- Tonelli FMP, Goulart VAM, Gomes KN et al (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10:2423–2450. https://doi.org/10.2217/nnm.15.65ArticleCASGoogle Scholar
- Tong T, Wilke CM, Wu J et al (2015) Combined toxicity of nano-ZNO and nano-TIO2: from single- to multinanomaterial systems. Environ Sci Technol 49:8113–8123. https://doi.org/10.1021/acs.est.5b02148ArticleCASGoogle Scholar
- Turan NB, Erkan HS, Engin GO et al (2019) Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity—a review. Process Saf Environ Prot 130:238–249. https://doi.org/10.1016/j.psep.2019.08.014ArticleCASGoogle Scholar
- Varghese OK, Kichambre PD, Gong D et al (2001) Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B 81:32–41. https://doi.org/10.1016/S0925-4005(01)00923-6ArticleCASGoogle Scholar
- Vasir JK, Labhasetwar V (2005) Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 4:363–374. https://doi.org/10.1177/153303460500400405ArticleCASGoogle Scholar
- Vasir J, Reddy M, Labhasetwar V (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64. https://doi.org/10.2174/1573413052953110ArticleCASGoogle Scholar
- Vignardi CP, Hasue FM, Sartorio PV et al (2015) Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquat Toxicol 158:218–229. https://doi.org/10.1016/j.aquatox.2014.11.008ArticleCASGoogle Scholar
- Völker C, Graf T, Schneider I et al (2014) Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum. Environ Sci Pollut Res 21:10661–10670. https://doi.org/10.1007/s11356-014-3067-5ArticleCASGoogle Scholar
- Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81. https://doi.org/10.1016/j.coche.2016.03.001ArticleGoogle Scholar
- Wiesner MR, Bottero J-Y (2007) Environmental Nanotechnology; The McGraw-Hill Companies: New York, p 540 Google Scholar
- Weng J, Ren J (2006) Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem 13:897–909. https://doi.org/10.2174/092986706776361076ArticleCASGoogle Scholar
- Wilcoxon JP (2000) Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J Phys Chem B 104:7334–7343. https://doi.org/10.1021/jp0012653ArticleCASGoogle Scholar
- Wu M, Xiang J, Que C et al (2015) Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai China. Chemosphere 138:486–493. https://doi.org/10.1016/j.chemosphere.2015.07.002ArticleCASGoogle Scholar
- Xu JY, Zhang H (2018) Long-term effects of silver nanoparticles on the abundance and activity of soil microbiome. J Environ Sci 69:3–4. https://doi.org/10.1016/j.jes.2018.06.009ArticleGoogle Scholar
- Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132. https://doi.org/10.1016/j.toxlet.2005.03.003ArticleCASGoogle Scholar
- Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861. https://doi.org/10.1021/es052208wArticleCASGoogle Scholar
- Yang X, Gondikas AP, Marinakos SM et al (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127. https://doi.org/10.1021/es202417tArticleCASGoogle Scholar
- Yin R, Luo Q, Wang D et al (2014) SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 49:6067–6073. https://doi.org/10.1007/s10853-014-8330-0ArticleCASGoogle Scholar
- Ying Y, Yang Y, Ying W et al (2016) Two-dimensional materials for novel liquid separation membranes. Nanotechnology 27:332001. https://doi.org/10.1088/0957-4484/27/33/332001ArticleCASGoogle Scholar
- Ying Y, Ying W, Li Q et al (2017) Recent advances of nanomaterial-based membrane for water purification. Appl Mater Today 7:144–158. https://doi.org/10.1016/j.apmt.2017.02.010ArticleGoogle Scholar
- Young LS, Searle PF, Onion D et al (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208:299–318. https://doi.org/10.1002/path.1896ArticleCASGoogle Scholar
- Zhang J, Jin Y, Li C et al (2009) Creation of three-dimensionally ordered macroporous au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Appl Catal B Environ 91:11–20. https://doi.org/10.1016/j.apcatb.2009.05.001ArticleCASGoogle Scholar
- Zhang Y, Tang Z-R, Xianzhi F et al (2011) Nanocomposite of ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl Catal B Environ 106:445–452. https://doi.org/10.1016/j.apcatb.2011.06.002ArticleCASGoogle Scholar
- Zhang R, Zhang X, Gao S et al (2019) Assessing the in vitro and in vivo toxicity of ultrafine carbon black to mouse liver. Sci Total Environ 655:1334–1341. https://doi.org/10.1016/j.scitotenv.2018.11.295ArticleCASGoogle Scholar
- Zhou Q, Xiao J, Wang W (2006) Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J Chromatogr A 1125:152–158. https://doi.org/10.1016/j.chroma.2006.05.047ArticleCASGoogle Scholar
- Zhou L, Li P, Zhang M et al (2020) Carbon black nanoparticles induce pulmonary fibrosis through NLRP3 inflammasome pathway modulated by miR-96 targeted FOXO3a. Chemosphere 241:125075. https://doi.org/10.1016/j.chemosphere.2019.125075ArticleCASGoogle Scholar
- Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713. https://doi.org/10.1039/b805998eArticleCASGoogle Scholar
- Zhu X, Zhou J, Cai Z (2011) TiO2 nanoparticles in the marine environment: impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45:3753–3758. https://doi.org/10.1021/es103779hArticleCASGoogle Scholar
- Zhu Y, Jianhua W, MIng C et al (2019) Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms. Chemosphere 237:124403. https://doi.org/10.1016/j.chemosphere.2019.124403ArticleCASGoogle Scholar
- Ziari H, Behbahani H, Kamboozia N et al (2015) New achievements on positive effects of nanotechnology zyco-soil on rutting resistance and stiffness modulus of glasphalt mix. Construct Build Mater 101:752–760. https://doi.org/10.1016/j.conbuildmat.2015.10.150ArticleGoogle Scholar
Author information
Authors and Affiliations
- Department of Environment Studies, Panjab University, Chandigarh, India Teenu Jasrotia & Rajeev Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India Teenu Jasrotia & Ganga Ram Chaudhary
- Florida Polytechnic University, Lakeland, FL, USA Sesha Srinivasan
- Teenu Jasrotia